Dijital-Grafik-Görsel tabanlı soyağaçları faklı amaçlar için de olsa son 20 yılda oldukça ileri sayılabilecek bir yere gelmiştir. Genetik risk yoğunlaşmasını önceleyen soyağaçları da geliştirilmiştir. Günümüzde görülme sıklığı ve/veya mortalitesi (5 yıllık sağ kalım oranları bakımından) yüksek olan meme, mide, kolon, prostat gibi kanserlerde ve bu kanserlerin yanı sıra bireyleri ve toplumları etkileme gücü bakımından önde gelen kalp krizi, şeker hastalığı, yüksek tansiyon ve inme gibi şüphe, bulgu ya da tanı taşıyan vakalarda hekimler derhal birinci veya ikinci derece akrabalarında benzer bir sağlık öyküsünün olup olmadığını araştırmaktadır. Bireyin Soyağacında benzer bir öykü varsa, bu durumda hem genetik RF matematiksel bir formül ile hesaplanabilmekte, hem de ilişkili olabilecek başka hastalık türleri açısından da hesaplanabilir risk verileri elde edilmektedir. Hasta gerek kesin teşhis ve gerekse de tedavi yöntemi bakımından DNA analizine yönlendirilmekle birlikte, mutasyon saptanan gen olursa bu aynı zamanda soyağacındaki diğer kişiler için de risk faktörü hesaplamayı elverişli kılabilmektedir. Ancak bulunan mutasyonlar aynı soyağacındaki diğer bireyler bakımından da kıymetli veriler içermektedir. Dünya Sağlık Örgütüne göre pek çok hastalık türlerinde, RF oluşturan başta genetik olmak üzere; çevre, demografik, fizyolojik ve davranışsal koşullar bilinmektedir. Her hastalık için yapay zekâ veya makine öğrenmesi gibi yöntemlerle elde edilen veriler toplam RF hesabında frekansı, derecesi ve şiddeti gibi genel kabul görmüş metrikler bir medikal soyağacı üzerine işlenebilir ve risk faktörü otomatik olarak hesaplanabilir. Esas amaç e-Nabız gibi sitemlerde zaten var olan tanı ve teşhislere dair uluslararası hastalık kodları, raporlar, kullanılan ilaçlar ve tahliller gibi verilerin RF formalarına otomatik olarak yansıtılmasıdır. Bireylerden alınacak diğer veriler ise tanı-teşhis-tedavi evrelerinde önemli bir karar desteği sağlayacaktır. Başlarda akademik çalışmalara elde edilen bulgular ilk girdiyi oluştursa da sistem geri beslemelerle kesine yakın veriler üretecek ve risk değerlendirme formlarındaki her katsayı yüksek kesinlikte hesap yapılmasını sağlayacaktır. Bu sistemdeki en önemli çıktılardan biri ise RF hesabı yapılan bir bireyin aynı veri tabanı üzerinde bulunan kan bağlıları tarafından da karşılıklı olarak kullanılarak genetik değerlendirmenin de RF hesabına eklenmesidir. Yani birey için ilk RF hesabında kan bağlarından yararlanılırken bu defa da hesaplanan risklerin kan bağlıları için yeniden kullanılabilir olmasıdır. Sistem ego-centric ve crowd-sourcing olarak adlandırılan yöntemlerle çok çabuk bir şekilde ve limitsiz büyüme özelliğine sahiptir. Bu kadar verinin birlikte anlamlı ilişkiler kurularak yapılandırılması, değerlendirilmesi ve hesaplar yapılması teorik olarak bir limit içermektedir. Ancak Google, IBM, Amazon ve D-Wave gibi firmalar tarafından kuantum bilgisayarları kullanıma sokulmuştur ve bulut üzerinden kullanıma hazırdır. Dolayısı ile yüksek hacimli bu veriler kuantum bilgisayarları ile yapay zekâ sistemlerinin ortaklaşa çalışması sonucu insanlığın hizmetine sunulabilecektir.
Digital-Graphic-Visual based Pedigree Tree have come to a place that can be considered quite advanced in the last 20 years, albeit for different purposes. Pedigrees have also been developed that prioritize genetic risk concentration. Today, in cancers such as breast, stomach, colon, prostate, which have high incidence and / or mortality (in terms of 5-year survival rates), and these cancers as well as heart attack, diabetes, high blood pressure and stroke, which are leading in terms of affecting individuals and societies. In cases with suspicion, finding or diagnosis, physicians immediately investigate whether their first or second-degree relatives have a similar health history. If there is a similar history in their family tree, then both genetic RF can be calculated with a mathematical formula and computable risk data can be obtained in terms of other disease types that may be related. Although the patient is directed to DNA analysis in terms of both the definitive diagnosis and the treatment method, if the mutation is detected, this can also make it convenient to calculate the risk factor for other people in the pedigree. However, the mutations found also contain valuable data for other individuals in the same pedigree. According to the World Health Organization, in many types of diseases, mainly genetic; environmental, demographic, physiological and behavioral conditions are known. For each disease, data obtained by methods such as artificial intelligence or machine learning can be processed on a medical pedigree with generally accepted metrics such as frequency, degree and severity in the total RF calculation and the risk factor can be calculated automatically. The main purpose is to automatically reflect data such as international disease codes, reports, medicines and tests on the RF forms that already exist in systems such as e-Nabız. Other data to be obtained from individuals will provide an important decision support in the diagnosis-diagnosis-treatment stages. Although the findings obtained from academic studies at the beginning constitute the first input, the system will produce almost definite data with feedbacks and each coefficient in the risk assessment forms will provide high precision calculations. One of the most important outputs of this system is the reciprocal use of an individual's blood affiliates on the same database, and the addition of genetic evaluation to the RF account. In other words, while blood ties are used in the first RF account for the individual, this time the calculated risks are reusable for blood relatives. The system has the ability to grow very quickly and without limit, with methods called ego-centric and crowd-sourcing. There is a theoretical limit to structuring, evaluating and making calculations by establishing meaningful relationships with this amount of data. However, quantum computers have been introduced by companies such as Google, IBM, Amazon and D-Wave and are ready for use on the cloud. Therefore, these high-volume data can be offered to humanity as a result of the joint work of quantum computers and artificial intelligence systems.